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ABSTRACT

A new model of cosmology is proposed, where the state of high energy density com-
monly associated with the big bang is generated by the collapse of an antineutrino
star that has exceeded its Chandrasekhar limit. To allow the first neutrino stars and
antineutrino stars to form naturally from an initial quantum vacuum state, matter and
antimatter are assumed to gravitationally repel. In this scenario, a degenerate antineu-
trino star in effective hydrostatic equilibrium has a density that is similar to the dark
energy density of the ΛCDM model. When viewed from the core, such a star could
today accelerate matter radially and emit the isothermal cosmic microwave background
radiation, which addresses the horizon and flatness problems. This model and the
ΛCDM model are in similar quantitative agreement with supernova distance measure-
ments. The presented model is also in qualitative agreement with observed large-scale
anisotropy and inhomogeneity, which distinguishes it from the ΛCDM model.

Keywords: Cosmology: Theory ·Gravitation · Early universe · Dark energy · Large-scale
structure of universe · Cosmic background radiation · Neutrinos

1. INTRODUCTION

Almost a century ago, observations showed for the first time that the distribution of matter in
our universe is expanding (Hubble 1929; Slipher 1917). The big bang model describes not only this
expansion, but also the abundance of light elements and the distribution of radiation and matter
in the universe. It assumes that the universe is homogeneous and isotropic on large scales, which
is known as the cosmological principle. Mathematically, the Friedman-Lemâıtre-Robertson-Walker
(FLRW) metric upholds the cosmological principle by uniformly changing the metric of space with
a scale factor that varies in time. In our apparently flat universe, the scale factor depends on the
fractional matter density (Ωm) and fractional dark energy density (ΩΛ). Dark energy is commonly
thought to be the constant energy density of the quantum vacuum. Physically, the matter density
decelerates the inertial expansion of the metric after the big bang and dark energy accelerates it.
Twenty years ago, observations of type Ia supernovae (SNe Ia) showed an accelerating expansion
of matter (Riess et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999). Today, a concordance
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from various observations defines the ΛCDM model, which parameterizes the flat FLRW metric
with Ωm = 0.31 and ΩΛ = 0.69 (Ade et al. 2016). This corresponds to a dark energy density of
ρΛ ≈ 6× 10−30g/cm3, which is 10120 times smaller than expected (Weinberg 1989). Thus we do not
yet understand what makes up the majority of the observable universe. Alternative models include a
repulsive interaction between matter and antimatter (Benoit-Lévy and Chardin 2012; Dopita 2012;
Villata 2013; Hajdukovic 2011b, 2012b, 2014) and relic neutrino condensation (Fardon et al. 2004;
Hoon 2013). Despite these alternatives, the ΛCDM model is so far our most successful description
of the late universe.

The ΛCDM model does not address several key puzzles associated with the early universe. For
example, when we trace the expansion of all observable matter (∼ 1055 g) backwards in time, we
encounter a state of high energy density commonly associated with the big bang. The origin of
this state is an open question of cosmogony (Khoury et al. 2001) and may motivate a big bounce
(Brandenberger and Peter 2017). Another puzzle arises when we assume that this state initially
contained equal amounts of matter and antimatter, while unequal amounts are observed in the
universe today. To account for this matter-antimatter asymmetry, a mechanism for baryogenesis is
necessary (Sakharov 1991). Additionally, the initially hot and dense matter cooled sufficiently to
become transparent to radiation ∼ 105 years after the big bang. In the ΛCDM model, this matter
emits the cosmic microwave background (CMB) radiation (Penzias and Wilson 1965). However,
the CMB is more isotropic than expected, which is known as the horizon problem. The theory of
cosmological inflation addresses this by introducing a period of exponentially accelerating expansion
up to 10−32 s after the big bang (Guth 1981; Linde 1982; Albrecht and Steinhardt 1982). This
could allow any two regions of the CMB to become thermalized in the early universe. This also
addresses the question of why our expanding metric appears to be spatially flat, known as the flatness
problem. However, inflation suffers from problems such as the entropy problem (Penrose 1989) or the
multiverse problem (Ijjas et al. 2014). Moreover, the ΛCDM model interpretation of CMB data gives
an expansion rate of the universe (H0) that is in tension with cosmology-independent measurements
of H0 at the 3.7σ level (Aghanim, N. et al. 2016; Riess et al. 2018). This motivates a search for new
models, with the ΛCDM model as the benchmark.

In the present Letter, a new model of cosmology is proposed that addresses all of the above puzzles,
barring baryogenesis. A degenerate self-gravitating gas of neutrinos, which we will call a neutrino
star, collapses when its mass exceeds the Chandrasekhar limit, Mνe ∝ 1/m2

νe (Chandrasekhar 1931,
1935). The small neutrino mass (mνe) guides the ansatz that the collapse of an antineutrino star
created the state of high energy density in the early universe. In this scenario, the universe is
initially in a quantum vacuum state of minimal entropy. This state is gravitationally unstable and
organically forms spatially separated neutrino stars and antineutrino stars when we assume that
matter and antimatter gravitationally repel. After a ‘neutrinonova’ as described below, a fraction of
the antineutrino gas eventually returns to effective hydrostatic equilibrium. Viewed from the core, it
could today emit isothermal radiation and accelerate matter radially.

Both the new model and the ΛCDM model describe supernova distance measurements with com-
parable quantitative accuracy. The density of the antineutrino star is similar to the dark energy
density of the ΛCDM model and the neutrino mass is constrained to high statistical precision. The
new model is qualitatively consistent with CMB anisotropies and large-scale structures that challenge
the cosmological principle of the ΛCDM model.
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Although there are strong theoretical arguments against repulsive gravity (for a review, see Nieto
and Goldman (1991)), there have not yet been any conclusive direct tests. Several tests with an-
tihydrogen are currently underway at CERN (Charman et al. 2013; Pérez et al. 2015; Brusa et al.
2017). While the hypothesis of repulsive gravity may prove incorrect, we will show that it offers an
explanation for cosmogony and dark energy. Moreover, repulsive gravity has been proposed as origin
of CP violation (Chardin and Rax 1992), which is one of the requirements for baryogenesis, and as
alternative to dark matter via vacuum polarization (Hajdukovic 2011c, 2012a, 2014; Penner 2016).
It also predicts antimatter emission from matter inside black holes, which will be briefly discussed
(Hajdukovic 2011a; Villata 2015).

2. ANTINEUTRINO STAR MODEL OF THE EARLY UNIVERSE

2.1. Chandrasekhar limit

When a white dwarf star exceeds the Chandrasekhar limit, its own gravitational pressure over-
whelms the degeneracy pressure of electrons and it collapses in a supernova (Chandrasekhar 1931).
Similarly, the limiting mass of a degenerate gas of electron neutrinos is

Mνe =
ω0

3

√
3π

2

(
~c
G

)3/2(
1

mνe

)2

, (1)

where ω0
3 ≈ 2.018236 is part of a numerical solution to the Lane-Emden equation, mνe is the effective

electron neutrino mass and other variables take their usual meaning. The most stringent experimental
constraint to date on the electron neutrino mass of mνe < 2.05 eV/c2 was found by Aseev et al. (2011)
and gives a lower limit of Mνe > 2.39 × 1051 g. This lower limit is only four orders of magnitude
below the mass content of the universe at the time of the big bang (∼ 1055 g) (Ade et al. 2016). The
collapse of an antineutrino star can thus create the state of high energy density commonly associated
with the big bang with a minimum of new physics.

2.2. Instability of the quantum vacuum

As initial condition for the universe we choose an infinite volume of quantum vacuum due to its low
number of degrees of freedom. The quantum vacuum contains a sea of virtual particle-antiparticle
pairs going into and out of existence. The universe today is no longer in this low-entropy quantum
vacuum state. To explain this, we assume that matter and antimatter gravitationally repel, such that
the quantum vacuum is gravitationally unstable. Short-lived perturbations in the particle-antiparticle
density create a weak and fluctuating gravitational field on small scales. By the Schwinger mechanism,
this field has a non-zero probability of creating real particles by separating virtual ones before they
can annihilate (Schwinger 1951; Hajdukovic 2014). For example, the pair creation rate per unit
volume and time in a constant local gravitational field gradient, g, is

dN
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The exponential dependence on effective mass (m) strongly favors creation of neutrino-antineutrino
pairs compared to other particles of the Standard Model (Hajdukovic 2014; Greiner et al. 1985).
It also favors cold neutrinos over hot neutrinos, which allows them to bind gravitationally. Thus,
repulsive gravity enables the gradual formation of mutually repulsive neutrino stars and antineutrino
stars.
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2.3. Qualitative description of neutrinonova

Whenever an antineutrino star exceeds its limiting mass due to accretion from either the Schwinger
mechanism or a merger event, it collapses in a “neutrinonova” (NN). At sufficiently high temperatures
and densities, antineutrinos could transform most of their kinetic energy via high-energy collisions
into equal amounts of baryonic matter and antimatter. Repulsive gravity and thermal pressure could
subsequently halt the collapse and initiate expansion in a big bounce. During the expansion, baryonic
matter and antimatter start to annihilate faster than they are created, with baryogenesis invoked to
leave a small remnant of baryonic matter (Sakharov 1991). The surviving antineutrinos and matter
evolve as an adiabatic ideal gas initially in thermal equilibrium. During adiabatic expansion, the
temperature (T ) decreases with an increase in volume (V ) as T ∝ V −1/3 for a relativistic gas and
T ∝ V −2/3 for a non-relativistic gas. Thus, baryonic matter undergoes nucleosynthesis until temper-
ature and density decrease sufficiently to “freeze out” certain reactions. This process is qualitatively
similar to big bang nucleosynthesis (BBN) (Alpher et al. 1948). Since baryonic matter is much more
massive than neutrinos, it becomes non-relativistic at a much higher temperature than the gas of
antineutrinos. It thus begins structure formation in a much smaller volume than the gas of antineu-
trinos. Newly formed galaxies are subsequently gravitationally repelled from initial proximity to the
center of the antineutrino gas. A fraction of the original antineutrino gas eventually re-forms into
a degenerate self-gravitating gas, and re-establishes thermal equilibrium a sufficient time t � R/c
afterwards. Observers close to the center of this isothermal star would detect isotropic black body
radiation, which we identify as the CMB. We call this the “ATLAS (AnTineutrino mass-Limited
gAS)” model1 and refer to the antineutrino star as ATLAS-1.

3. ANTINEUTRINO STAR MODEL OF THE LATE UNIVERSE

3.1. Antineutrino star is defined by two parameters

To characterize a degenerate antineutrino gas in effective hydrostatic equilibrium, we first make
two assumptions. First, we ignore thermal or radiation pressure of the antineutrino gas by assuming
it is highly degenerate with temperature T/TF � 1, where TF is the Fermi temperature. Second, we
assume that all neutrino-antineutrino pairs created from the quantum vacuum are electron flavored
pairs with effective inertial mass mνe . Note that due to neutrino oscillations (Fukuda et al. 1998;
Ahmad et al. 2002), free electron neutrinos have an effective mass mνe =

∑
i |Uei|2mi, where Uei are

the Pontecorvo-Maki-Nakagawa-Sakata leptonic mixing matrix elements and mi are eigenstates of
definite mass (i = 1, 2, 3, respectively). This second assumption is reasonable in the context of the
Schwinger mechanism if the electron neutrino mass mνe is much less than the muon (mνµ) or tau
(mντ ) neutrino masses.

With these assumptions we can use Chandrasekhar’s equation of state for degenerate matter, de-
rived from hydrostatic equilibrium of gravitational and degeneracy pressures (Chandrasekhar 1935).
This equation of state does not take into account general relativistic effects, which we can ignore for
simplicity if the radius of the star is much larger than its Schwarzschild radius, RS/R � 1. Using
Chandrasekhar’s notation, we get

1

η2

d

dη

(
η2dφ

dη

)
= −

(
φ2 − 1

y2
0

)3/2

, (3)

1 In Greek mythology, Atlas is a titan who holds up the celestial spheres.
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where η is proportional to radius, φ(η) is proportional to the gravitational potential, and y0 is a
constant related to the central density by

ρ0 = (y2
0 − 1)3/2m

4
νec

3

3π2~3
. (4)

The density profile of the antineutrino star is given by

ρν̄e(η) = ρ0
y3

0

(y2
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3/2

(
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y2
0

)3/2

, (5)

and vanishes at the star’s radius, R = αη1, where

α =

(
3π~3

4cGm4
νey

2
0

)1/2

(6)

is a scale length. We can numerically evaluate equation (3) by using as initial values the expansions
of φ(η) and its derivative φ′(η) near the origin, for example

φ(η) = 1− q3η2

6
+
q4η4

40
− q5(5q2 + 14)η6

7!
+O[η8] , (7)

where we used the substitution q2 = 1− 1/y2
0. The free parameters ρ0 and mνe allow us to uniquely

solve Chandrasekhar’s equation of state.
We assume that inertial masses (mi) of matter and antimatter are equal and positive, and that the

gravitational mass of matter is positive (mg/mi = 1) and of antimatter is negative (mg/mi = −1);
for generality, we don’t use overbar notation. The spherically symmetric gravitational potential ϕ(r)
inside and outside an antineutrino star is

ϕ(r) =

c2y0[φ(r/α)− 1], if r ≤ R ,

ϕ(R)−GMg

(
1
r
− 1

R

)
, if r > R ,

(8)

where Mg < 0 is the gravitational mass of the antineutrino star. The gauge is fixed to zero at the
star’s center, ϕ(0) = 0, so that ϕ(r) < 0 everywhere else.

3.2. Relative velocities define observational frame

An antineutrino star establishes a background potential given by equation (8) that is the dominant
contribution to the velocity of galaxies. Therefore, we can determine our approximate position
empirically from our velocities relative to other galaxies and to the rest frame of the antineutrino
star, that is the rest frame of the CMB. The velocities of galaxies relative to us scale approximately
isotropically with distance at a rate of H0 ≈ 70 km s−1Mpc−1 (Riess et al. 2018). The velocity of
the Local Group relative to the CMB is comparably small at vLG ≈ 627 km s−1 (Kogut et al. 1993).
These velocities suggest we are approximately at rest and near (but not at) the center of the star.
This can be explained with the small potential gradient near the center, which causes matter initially
close to the center to lag behind other matter in the overall expansion.
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3.3. Derivation of distance-redshift relationship

The Schwarzschild metric is useful to determine the redshift of light emitted by a galaxy in free
fall from initial proximity to the center of an antineutrino star. We may identify ourselves as
Schwarzschild observers, who are by definition at rest where the gauge is fixed to zero, namely
at the star’s center. When allowing for repulsive gravity, we need to define two different metrics for
matter and for photons.

Matter experiences a generalized Schwarzschild metric, where the proper time τ is given by

dτ 2 =

(
1 +

2V (r)

mic2

)
dt2 − dr2

c2

1

1 + 2V (r)
mic2

− r2dΩ2

c2
, (9)

where V (r) is the gravitational potential energy of a test particle, mi is its inertial mass, t is coordinate
time, and the angular path element in spherical coordinates is dΩ2 = sin θ2dφ2 + dθ2. Note that this
general expression allows matter and antimatter to experience different metrics that depend on the
sign of the potential energy, V (r). The time dilation factor for galaxies with average initial velocity
v0 undergoing free fall from the center of the star is found with energy conservation (Radosz et al.
2008) to be

dτ

dt
=

(
1 +

2ϕ(r)

c2

)√
1− v2

0

c2
, (10)

where ϕ(r) is the potential created by the antineutrino star in equilibrium and is given by equation
(8). The coordinate velocity vs = dr/dt is found similarly,

vs

c
=

(
1 +

2ϕ(r)

c2

)√
1−

(
1− v2

0

c2

)(
1 +

2ϕ(r)

c2

)
. (11)

By symmetry, we assume that photons in a gravitational potential undergo blueshift or redshift
independently of the matter or antimatter nature of the gravitational source. In other words, the
weak equivalence principle holds for photons but is modified for matter. We will thus use a metric
for photons that is agnostic to the type of matter,

dτ 2
γ =

(
1 +

2ϕ(r)

c2

Mg

Mi

)
dt2γ −

dr2
γ

c2

1

1 + 2ϕ(r)
c2

Mg

Mi

−
r2dΩ2

γ

c2
. (12)

Since proper time is zero for photons, the velocity vγ = (dr/dt)γ of distant photons moving in the
radial direction (dΩγ = 0) is

vγ
c

= 1 +
2ϕ(r)

c2

Mg

Mi

, (13)

where Mg is the gravitational mass and Mi the inertial mass of the source. The above equations
allow us to calculate the redshift seen by a Schwarzschild observer,

z =

(
dt

dτ

)(
1 +

vs

vγ

)
− 1 , (14)

which reduces to the special relativistic Doppler effect in flat spacetime (for example, at r = 0).
Therefore, redshift is caused by a combination of apparent radial velocity vs and time dilation of
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free-falling sources in the gravitational potential ϕ. The distance modulus of distant SNe Ia in
receding galaxies is

µth(z) = 25 + log10[r(z)(1 + z)] , (15)

where r(z) is the distance from the center of the antineutrino star in Megaparsec (Riess et al. 1998).

4. COSMOLOGICAL PARAMETERS

We can compare the theoretical distance modulus to observed distance moduli of SNe Ia for a given
set of cosmological parameters, θ = (mνe , ρ0, v0/c). Goodness of fit is determined with a χ2 statistic,

χ2
ν(θ) =

∑
i

[µth,i (zi; θ)− µ0,i(zi)]
2

σ2
µ0,i

, (16)

where σµ0,i is the measurement uncertainty in the observed distance modulus µ0,i. As observational
data, the “Union2.1” catalog of 580 SNe Ia is used2 (Suzuki et al. 2012). The best-fit parameter values
are mνe = 7.90 meV/c2, ρ0 = 1.60× 10−29 g/cm3 and v0/c = 6.38× 10−3. These give χ2

ν/dof = 1.04,
where dof stands for a model’s degrees of freedom. For reference, the ΛCDM model has a comparable
fit of χ2

Λ/dof = 1.09 (Ade et al. 2016). The theoretical distance modulus of the ATLAS model using
the above best-fit parameters is plotted together with the Hubble diagram of type Ia supernovae
in Figure 1. For comparison, the theoretical distance modulus of the concordance ΛCDM model is
shown with H0 = 67.74 km s−1Mpc−1 (Ade et al. 2016). We find that the ATLAS model can account
for the motion of matter with the spatially varying density of an antineutrino star in equilibrium
acting as a dark energy.

Following Riess et al. (1998), the probability density function (PDF) for a given cosmological
parameter is quantified with Bayes’ theorem, which gives a PDF for the electron neutrino mass of

p(mνe|µ0) =

∫ c
0
dv0

∫∞
0

exp(−χ2/2) dρ0∫ c
0
dv0

∫∞
0
dρ0

∫∞
0

exp(−χ2/2) dmνe

, (17)

where µ0 represents all measured distance moduli, which are assumed to be independent and normally
distributed. This gives a mass to one standard deviation of mνe = 7.90±0.16 meV/c2. Note that this
uncertainty is purely due to statistical error and does not include possible systematic errors, which
can be caused by model assumptions or calibration (Suzuki et al. 2012). This mass is consistent
with the present experimental upper limit of mνe < 2.05 eV/c2 (Aseev et al. 2011). Measurements
of neutrino mixing angles can give the muon and tau neutrino masses; for example, the most recent
best-fit values3 by Esteban et al. (2017) give [mνµ ,mντ ] ≈ [30.5, 26.9] meV/c2.

5. DISCUSSION

The antineutrino star parameters are approximately consistent with the model’s assumptions.
The best-fit muon and tau neutrino masses are larger than the electron neutrino mass by a fac-
tor of & 3. This is consistent with the simplifying assumption that the antineutrino star consists
only of electron neutrinos due to the Schwinger mechanism (section 3.1). The best-fit electron neu-
trino mass gives a Chandrasekhar limit ofMνe = 1.61× 1056 g. The re-formed antineutrino star has

2 http://supernova.lbl.gov/union/
3 NuFIT 3.2 (2018), http://www.nu-fit.org/?q=node/166

http://supernova.lbl.gov/union/
http://www.nu-fit.org/?q=node/166
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Figure 1. Top: Hubble diagram of SNe Ia (blue circles) with comparable fits by the ΛCDM model (dashed
line) and the ATLAS Model (solid line). Middle: Hubble diagram relative to the empty universe model for a
better comparison (for brevity, c = 1). Bottom: The antineutrino star’s density (dotted curve) is comparable
to the dark energy density of the ΛCDM model in the core of the star (ρΛ/ρ0 ≈ 0.4), and vanishes at the
star’s radius R = 17.6 Gly, where z = 1.80

mass M/Mνe = 0.277 and radius R = 17.6 billion light-years (Gly) or RS/R = 0.398, which is found
by solving Chandrasekhar’s equations using best-fit parameters. The antineutrino star is degenerate,
with central Fermi temperature TF,0 = 26.1 K > TCMB,0 = 2.73 K (Fixsen 2009). Future work could
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account for the temperature ratio T/TF and general relativistic effects O [(RS/R)2] to improve the
accuracy of the antineutrino star model. Since these effects are small and dominate at high-z, where
supernova data is still sparse, they are ignored for simplicity in the present model.

The ATLAS model predicts observations that challenge the cosmological principle of the ΛCDM
model. First, the high isotropy of the CMB suggests that the last neutrinonova occurred t � 17.6
billion years ago. Thus, sufficient time has elapsed for the formation of large structures in the
distant universe. This is qualitatively consistent with the existence of the Hercules-Corona Borealis
Great Wall (Horváth et al. 2014; Balazs et al. 2015); its size of 7-10 Gly challenges the homogeneity
assumption of the ΛCDM model, which predicts structures not larger than ∼ 1.21 Gly (Yadav et al.
2010; Clowes et al. 2013). Second, the Copernican Principle would suggest that we are not exactly
at the center of the antineutrino star. At the same time, observations of the largely isotropic Hubble
expansion and CMB suggest that we are relatively close to the center. This could explain small
yet statistically significant (∼ 3σ) anisotropies detected in both the distribution of radio galaxies
(Singal 2011; Tiwari and Nusser 2016) and the CMB (Bennett et al. 2011; Ade et al. 2014), which
challenge the isotropy assumption of the ΛCDM model. Note that all anisotropies are expected to
disappear when viewed from the exact center of the star. This central region could coincide with an
underdensity of matter in our cosmic neighborhood (for example, see Hoffman et al. (2017); Villata
(2012)).

The ATLAS model relies on testable assumptions, in particular on the assumption of repulsive
gravity. On cosmological scales, this assumption is useful for the continuity of the ATLAS model
on three occasions. It explains the formation of neutrino and antineutrino stars (section 2.2), the
bounce during a neutrinonova (section 2.3), and the radial acceleration of matter (see Fig. 1).
This assumption may be tested on galactic and laboratory scales. On galactic scales, it predicts
the emission of antimatter from matter inside the event horizon of black holes (Hajdukovic 2011a;
Villata 2015). The Fermi bubbles are two bulbous sources of gamma rays above and below the
Milky Way’s galactic plane with bases converging on the galactic center. This region harbors the
supermassive black hole Sgr A∗ with mass Mbh = 4 × 106 M�, where M� is a solar mass (Ghez
et al. 2008; Gillessen et al. 2009; Boehle et al. 2016). The gamma rays emitted from the Fermi
bubbles can be modeled as CMB photons that have scattered off high-energy charged particles of
uncertain origin (Ackermann et al. 2014; Yang and Ruszkowski 2017). Future observations could
investigate whether positrons and antiprotons emitted by accreting matter inside the event horizon
of Sgr A∗ could create the Fermi bubbles. There also exists a positron excess in the galactic center
(Weidenspointner et al. 2008) and in cosmic rays (Adriani et al. 2013; Accardo et al. 2014; Aguilar
et al. 2016; Abeysekara et al. 2017), which could be emitted by accreting compact objects. More
generally, repulsive gravity could provide a robust mechanism for Hawking radiation from near the
event horizon in the form of antiparticles (Hawking 1974, 1975). On laboratory scales, the ALPHA,
GBAR and AEGIS laboratories at CERN (Charman et al. 2013; Pérez et al. 2015; Brusa et al. 2017)
are currently directly testing the assumption of repulsive gravity and thereby a key assumption of
the ATLAS model.

6. CONCLUSIONS

The entropy of the universe is increasing relative to an initial state of low entropy, which is assumed
to be the quantum vacuum. With the assumption that matter and antimatter gravitationally repel,
which is currently being tested at CERN, this vacuum gradually decays into neutrinos and antineu-
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trinos. The collapse of an antineutrino star is a possible explanation for the state of high energy
density in the early universe. After collapse and subsequent creation of matter via baryogenesis, an
antineutrino gas adiabatically expands and partially re-forms into an antineutrino star in effective
hydrostatic equilibrium. Viewed from its core, this star could today emit the isothermal CMB ra-
diation and radially accelerate matter. This addresses the problems of cosmogony and dark energy,
and removes the horizon and flatness problems. The above ATLAS model is in good quantitative
agreement (χ2

ν/dof = 1.04) with SNe Ia distance measurements. Supernova data constrain the elec-
tron neutrino mass as a cosmological parameter to mνe = 7.90± 0.16 (stat.) meV/c2, without taking
systematic errors into account. The model is qualitatively consistent with existing observations of
large structures in the distant universe and anisotropies in the Hubble flow and CMB, which help to
distinguish it from the ΛCDM model.

I thank Eric D’Hoker for many lectures on Statistical Mechanics. I thank Mark Morris, Viktor
Linders, Elizabeth Mills, Rainer Sachs and Troy Carter for helpful questions and comments.
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830(1), 17 (2016).
doi:10.3847/0004-637X/830/1/17

Brandenberger, R., Peter, P.: Foundations of
Physics 47(6), 797 (2017).
doi:10.1007/s10701-016-0057-0

Brusa, R.S., Amsler, C., Ariga, T., et al.: Journal
of Physics: Conference Series 791(1), 012014
(2017). doi:10.1088/1742-6596/791/1/012014

Chandrasekhar, S.: ApJ 74, 81 (1931).
doi:10.1086/143324

Chandrasekhar, S.: MNRAS 95(3), 207 (1935).
doi:10.1093/mnras/95.3.207

http://dx.doi.org/10.1126/science.aan4880
http://dx.doi.org/10.1103/PhysRevLett.113.121101
http://dx.doi.org/10.1088/0004-637X/793/1/64
http://dx.doi.org/10.1051/0004-6361/201321534
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1103/PhysRevLett.111.081102
http://dx.doi.org/10.1051/0004-6361/201628890
http://dx.doi.org/10.1103/PhysRevLett.117.091103
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRev.73.803
http://dx.doi.org/10.1103/PhysRevD.84.112003
http://dx.doi.org/10.1093/mnras/stv1421
http://dx.doi.org/10.1088/0067-0049/192/2/17
http://dx.doi.org/10.1051/0004-6361/201016103
http://dx.doi.org/10.3847/0004-637X/830/1/17
http://dx.doi.org/10.1007/s10701-016-0057-0
http://dx.doi.org/10.1088/1742-6596/791/1/012014
http://dx.doi.org/10.1086/143324
http://dx.doi.org/10.1093/mnras/95.3.207


ATLAS Model 11

Chardin, G., Rax, J.-M.: Physics Letters B
282(1), 256 (1992).
doi:10.1016/0370-2693(92)90510-B

Charman, A.E., , et al. (ALPHA Collaboration):
Nat. Commun. 4, 1785 (2013).
doi:10.1038/ncomms2787

Clowes, R.G., Harris, K.A., Raghunathan, S., et
al.: MNRAS 429(4), 2910 (2013).
doi:10.1093/mnras/sts497

Dopita, M.: Ap&SS 337(1), 3 (2012).
doi:10.1007/s10509-011-0956-7

Esteban, I., Gonzalez-Garcia, M.C., Maltoni, M.,
et al.: Journal of High Energy Physics 2017(1),
87 (2017). doi:10.1007/JHEP01(2017)087

Fardon, R., Nelson, A.E., Weiner, N.: JCAP
2004(10), 005 (2004).
doi:10.1088/1475-7516/2004/10/005

Fixsen, D.J.: ApJ 707(2), 916 (2009).
doi:10.1088/0004-637X/707/2/916

Fukuda, Y., Hayakawa, T., Ichihara, E., et al.:
Phys. Rev. Lett. 81, 1562 (1998).
doi:10.1103/PhysRevLett.81.1562

Ghez, A.M., Salim, S., Weinberg, N.N., et al.: ApJ
689(2), 1044 (2008). doi:10.1086/592738

Gillessen, S., Eisenhauer, F., Trippe, S., et al.:
ApJ 692(2), 1075 (2009).
doi:10.1088/0004-637X/692/2/1075

Greiner, W., Müller, B., Rafelski, J.: Quantum
Electrodynamics of Strong Fields, p. 569.
Springer, Berlin, Heidelberg (1985).
doi:10.1007/978-3-642-82272-8

Guth, A.H.: Phys. Rev. D 23, 347 (1981).
doi:10.1103/PhysRevD.23.347

Hajdukovic, D.S.: Advances in Astronomy 2011
(2011a). https://doi.org/10.1155/2011/196852

Hajdukovic, D.S.: Ap&SS 334(2), 219 (2011b).
https://doi.org/10.1007/s10509-011-0754-2

Hajdukovic, D.S.: Ap&SS 334(2), 215 (2011c).
https://doi.org/10.1007/s10509-011-0744-4

Hajdukovic, D.S.: Ap&SS 337(1), 9 (2012a).
https://doi.org/10.1007/s10509-011-0938-9

Hajdukovic, D.S.: Ap&SS 339(1), 1 (2012b).
https://doi.org/10.1007/s10509-012-0992-y

Hajdukovic, D.S.: Physics of the Dark Universe 3,
34 (2014).
https://doi.org/10.1016/j.dark.2014.03.002

Hawking, S.W.: Nature 248(5443), 30 (1974).
doi:10.1038/248030a0

Hawking, S.W.: Communications in Mathematical
Physics 43(3), 199 (1975).
doi:10.1007/BF02345020
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